Kwantummechanica

Kwantummechanica is een natuurkundige theorie die het gedrag van materie en energie met interacties van kwanta op atomaire en subatomaire schaal beschrijft.

Index:

Introductie
10 Myths About The Quantum Universe
Kwantuminternet
Space and time may be illusions

Links
Schrödingers kat

Introductie:
De ontwikkeling van de kwantummechanica sinds het begin van de 20e eeuw kan, samen met die van de relativiteitstheorie, beschouwd worden als de overgang van de klassieke natuurkunde naar de moderne natuurkunde.

Kwantummechanica is de mechanica (leer van bewegingen en krachten) die van toepassing is op de kleine schaal van moleculenatomen en subatomaire deeltjes.

De zintuiglijke waarneming leert dat de voorwerpen die wij zien en betasten, een zeer bepaalde vorm en afmeting hebben en dus in de ruimte gelokaliseerd zijn. Daarom is men geneigd te denken dat de fundamentele deeltjes van de materie eveneens een precieze vorm en afmeting hebben, en ze voor te stellen als kleine bolletjes met een karakteristieke straal, massa en lading. Die geëxtrapoleerde voorstelling is echter foutief. Op kleine schaal moet materie worden voorgesteld als een veld, dat wil zeggen een functie die aan ieder punt van de ruimte een getal toekent, ongeveer zoals fotonen (lichtdeeltjes) existentieel verbonden zijn met het elektromagnetische veld.

In de kwantumtheorie wordt de werkelijkheid op een fundamenteel andere manier benaderd dan in de klassieke natuurkunde, waarin ervan wordt uitgegaan dat er een waarnemeronafhankelijke werkelijkheid is en natuurkundige grootheden continue variabelen zijn, die in elke gewenste combinatie gemeten kunnen worden. Meetonnauwkeurigheden worden in de klassieke natuurkunde gezien als een praktisch probleem.

In de kwantumtheorie (althans in de breed aangehangen Kopenhaagse interpretatie van Niels Bohr en Werner Heisenberg) variëren natuurkundige grootheden stapsgewijs (met 1 kwantum tegelijk) en kan er geen enkele waarneming worden gedaan zonder dat het waargenomen verschijnsel wordt beïnvloed. Er is in de kwantumtheorie dus geen waarnemeronafhankelijke werkelijkheid. Door dit tweede fundamentele verschil met de klassieke natuurkunde is het principieel uitgesloten om het effect van de waarneming uit te schakelen: de keuze die de waarnemer maakt bij het opzetten van een experiment bepaalt in belangrijke mate de uitkomst daarvan. Het product van de onnauwkeurigheden van de gelijktijdige metingen van twee grootheden (bijvoorbeeld plaats en impuls) heeft volgens de onzekerheidsrelatie van Heisenberg een minimale waarde. Is de ene grootheid met de grootst mogelijke nauwkeurigheid gemeten, dan is de andere onvermijdelijk geheel onbepaald en ook niet bepaalbaar. De onzekerheidsrelatie is zelf echter wel nauwkeurig en objectief geformuleerd. Op macroscopische schaal is de invloed van kwantummechanische beperkingen op de nauwkeurigheid meestal verwaarloosbaar of geheel niet meetbaar en gaat de kwantummechanica over in de klassieke natuurkunde: dat heet het correspondentieprincipe.

De kwantummechanica doet bovendien slechts statistische uitspraken over een reeks van waarnemingen. Dat heeft tot gevolg dat het gedrag van een individueel elementair deeltje slechts in termen van waarschijnlijkheid kan worden beschreven. Die waarschijnlijkheden worden beschreven door de modulus in het kwadraat van de complexe golffuncties, die de kansdichtheid geven op het meten van een bepaalde waarde van een fysische grootheid zoals bv. plaatssnelheid en spin. Met de term “spin” wordt de kwantummechanische versie van het impulsmoment genoemd.

De beschrijving van systemen door middel van een golffunctie betekent dat deeltjes zich, afhankelijk van de manier waarop ze worden waargenomen, soms als een deeltje in klassieke zin, maar soms als een golfverschijnsel gedragen. Zo kunnen bijvoorbeeld elektronenbundels, net als lichtbundels, brekingsverschijnselen en interferentie en diffractie vertonen. Andersom kan licht ook beschouwd worden als bestaande uit kwanta, die in het geval van licht fotonen genoemd worden, met een energie E:

{\displaystyle E=h\nu }

waarin h de constante van Planck en \nu (de Griekse letter nu) de frequentie van het licht.

Bij het formuleren van de kwantummechanica in termen van golffuncties blijkt dat bepaalde fysische grootheden uitsluitend waarden kunnen aannemen uit een bepaalde verzameling, die van de situatie en de te meten grootheid afhangt. Een bekend voorbeeld is het feit dat elektronen in een atoom slechts bepaalde energieniveaus kunnen bezetten, wat aanleiding geeft tot spectraallijnen in het licht dat door het atoom wordt uitgezonden. Een ander opmerkelijk feit in de kwantummechanica is dat fysische grootheden van een systeem in sommige combinaties niet tegelijkertijd met willekeurige nauwkeurigheid bekend kunnen zijn. De belangrijkste voorbeelden hiervan zijn plaats x en impuls p, en tijd t en energie E. Dit feit staat bekend als de onzekerheidsrelatie van Heisenberg. De onnauwkeurigheden Δ in deze grootheden zijn naar onder in grootte begrensd door de volgende ongelijkheden:

\Delta x\Delta p\ge \frac h{4\pi}

\Delta E\Delta t\geq {\frac  h{4\pi }}

Dit volgt rechtstreeks uit de aanname van golfeigenschappen en uit de wiskundige eigenschap van de fouriertransformatie. Er zijn nog tal van andere onzekerheidsrelaties tussen paren van fysische grootheden, die daarom niet-commuterend worden genoemd. In jargon zegt men dat bij meten (waarnemen) van een willekeurige variabele de golffunctie wordt geprojecteerd op een eigentoestand. Dit betekent dat alle andere informatie (over alle andere observabelen) verloren gaat. De onzekerheidsrelatie tussen twee willekeurige niet-commuterende grootheden wordt gegeven door:

{\displaystyle \Delta A\,\Delta B\geq {\tfrac {1}{2}}|\langle [{A},{B}]\rangle |={\tfrac {1}{2}}|\operatorname {E} (AB-BA)|}

De kwantummechanica maakt onderscheid tussen twee typen deeltjes : bosonen en fermionen. Het onderscheid zit in de spin van het deeltje, een fundamentele eigenschap die alleen van het type deeltje afhangt en de waarden

{\displaystyle 0,{\tfrac {1}{2}},1,{\tfrac {3}{2}},\ldots } 

kan aannemen. De deeltjes met heeltallige spin heten bosonen, de andere worden fermionen genoemd. Een belangrijk resultaat met betrekking tot dit onderscheid is het uitsluitingsprincipe van Pauli, dat zegt dat er geen twee fermionen naast elkaar in dezelfde toestand kunnen bestaan. Voor de bosonen is dat wel mogelijk.

Links:
Quantum theorie

Quantum mechanics

This Quantum World

Quora, Kwantummechanica

Deel: