Big Bang / Oerknal & het Universum

Oerknal of Big Bang is de populaire benaming van de kosmologische theorie die op basis van de algemene relativiteitstheorie aannemelijk maakt dat 13,7 miljard jaar geleden het heelal ontstond uit een enorm heet punt (ca. 1028 Kelvin), met een bijna oneindig grote dichtheid, ofwel een singulariteit. Tegelijkertijd met de oerknal zouden ruimte en tijd zijn ontstaan.

Door NASA / WMAP Science Team – http://map.gsfc.nasa.gov/media/121238/ilc_9yr_moll4096.png, Publiek domein, Koppeling

Index:

Introductie
Discrepantie
The Big Bang may be a black hole inside another universe
Did A Black Hole Give Birth To Our Universe?
What happened before the Big Bang?
Hoe oud is het heelal?
Physicists Think They’ve Spotted the Ghosts of Black Holes from Another Universe
There are 5 eras in the universe’s lifecycle
Is The Universe Actually A Fractal?
Cosmologists create 4,000 virtual universes to solve Big Bang mystery
Donkere materie / Evidence AGAINST dark matter?!
Donkere energie
Eerste materie in het Universum

Links

Introductie:
Het is wiskundig te formuleren hoe een driedimensionale ruimte ontstaat uit een punt, maar niet visueel voorstelbaar. Het beeld van een analoge tweedimensionale ruimte helpt echter: het oppervlak van een bol die opzwelt vanuit een punt. Dat oppervlak is gekromd, het heeft geen randen en het is eindig; eigenschappen die een driedimensionale ruimte ook kan hebben. Aan het beeld van een ballon die opgeblazen wordt, is de term inflatie ontleend.

De theorie is onder meer gebaseerd op de waarneming van het voortdurend uitdijende heelal, in het bijzonder de roodverschuiving van de spectraallijnen en van licht van verre sterrenstelsels, het dopplereffect, en de waargenomen hoeveelheid helium die gevormd is voordat er sterren waren. De algemene relativiteitstheorie is op dit punt echter nog niet volledig, aangezien het idee van een oneindig grote dichtheid strijdig is met de fundamentele wetten van de natuurkunde.

Grondlegger van de oerknaltheorie is de Leuvense hoogleraar en priester dr. Georges Lemaître. De term ‘big bang’ werd voor het eerst door Fred Hoyle in 1950 gebruikt als een denigrerende aanduiding om zijn afkeer van de theorie tot uitdrukking te brengen. Hoyle was zelf voorstander van het concurrerende maar thans verlaten steady-statemodel.

Timeline of the metric expansion of space, where space, including hypothetical non-observable portions of the universe, is represented at each time by the circular sections. On the left, the dramatic expansion occurs in the inflationary epoch; and at the center, the expansion accelerates (artist’s concept; not to scale). Source Wikimedia.

Discrepantie;
Ondertussen weten we dat het begin van het heelal gekenmerkt wordt door de oerknal. Vrijwel direct na de oerknal was er sprake van een exponentiële uitdijing van het heelal. In zeer korte tijd werd het heelal zeker quintiljoenen keren groter. In de periode daarna vertraagde de uitdijing, om vervolgens weer te versnellen. En nog altijd dijt het heelal versneld uit.

De hubbleconstante is de kosmologische parameter die de absolute schaal, grootte en leeftijd van het universum bepaalt. Het is een van de meest directe manieren om erachter te komen hoe het universum evolueert. De twee gangbare manieren om de hubbleconstante te meten is door cepheïden (pulserende sterren) en supernova’s waar te nemen en door metingen te verrichten van kosmische achtergrondstraling uit het vroege universum. Deze twee methoden geven echter niet dezelfde waarden.

Zo blijkt dat het universum met 74 kilometer per seconde per megaparsec uitdijt als we de hubbleconstante door middel van cepheïden en supernova’s meten. Kijken we echter naar de data van Planck over de kosmische achtergrondstraling, dan blijkt dat ons universum uitdijt met een snelheid van 67,4 kilometer per seconde per megaparsec (één parsec komt overeen met een afstand van 3,26 lichtjaar).


Hoe oud is het heelal?:

Physicists Think They’ve Spotted the Ghosts of Black Holes from Another Universe:

Is The Universe Actually A Fractal?:

Cosmologists create 4,000 virtual universes to solve Big Bang mystery:

Donkere materie / Evidence AGAINST dark matter?!:
Donkere materie is een hypothetische soort materie in het heelal, die niet zichtbaar is met optische middelen en dus niet te detecteren is via de elektromagnetische straling die de aarde bereikt. Daarom wordt ze donkere materie genoemd, om haar te onderscheiden van de zichtbare materie. Op grond van waarnemingen door de Planck Observatory wordt gedacht dat de totale hoeveelheid massa/energie van het heelal bestaat uit:

Het bestaan van donkere materie wordt verondersteld om de waargenomen bewegingen van sterren en andere objekten in het Melkwegstelsel en de bewegingen van sterrenstelsels in clusters te verklaren op een wijze die zowel consistent is met de zwaartekrachttheorie als met de relativiteitstheorie. De zichtbare materie en de geschatte onzichtbare baryonische massa in deze sterrenstelsels is niet genoeg om de bewegingssnelheid van de sterrenstelsels in hun baan om het gemeenschappelijk zwaartepunt te kunnen verklaren. De onzichtbare baryonische massa bestaat uit o.a. uitgedoofde sterren en planeten. Deze baryonische massa kan geschat worden op basis van de huidige natuurkundige theorieën en de ouderdom van de betrokken sterrenstelsels.

Donkere energie:
Donkere energie is een hypothetische vorm van energie in het heelal die verantwoordelijk zou zijn voor de versnelling van de uitdijing van het universum. Donkere energie is overal en gelijkmatig verdeeld in het heelal. Ze gedraagt zich alsof ze een negatieve zwaartekracht uitoefent.

In 1917 had Albert Einstein al een kosmologische constante geïntroduceerd in zijn veldvergelijkingen. Omdat Einstein uitging van een statisch heelal, deed hij dit om te voorkomen dat het heelal volgens zijn theorie door de zwaartekracht zou instorten. Na de ontdekking van de uitdijing van het heelal trok Einstein het idee van deze anti-zwaartekracht in en noemde dit idee “zijn grootste blunder”. Verdeling van donkere materie en donkere energie in het universum ten opzichte van zichtbare materie volgens metingen van de WMAP

In de jaren negentig werd aan de hand van de studie van verre supernovae, het Supernova Cosmology Project, ontdekt dat de uitdijing van het heelal zo’n vijf miljard jaar na de oerknal is gaan versnellen. De enige manier om dit te verklaren was het introduceren van een onbekende kracht die zich gedroeg als een kosmologische constante en werkte als een negatieve zwaartekracht.

Nauwkeurige analyses van de gegevens van de WMAP in maart 2003 brachten aan het licht dat de totale energie van het heelal voor 74% bestaat uit donkere energie. Inmiddels is dat aandeel door observaties van het Planck Observatory teruggebracht tot 68,3%. De massa-energie van gewone (baryonische) materie bedraagt 4,9%, de overige 26,8% wordt verklaard door donkere materieKosmologen hebben voor deze donkere energie nog geen verklaring.

Gedacht wordt aan de energie van het vacuüm zelf, de zogenaamde nulpuntsenergie. Dit levert voor de theoretici echter zeer grote problemen op indien deze energie volgens de kwantummechanica wordt berekend. De uitkomst hiervan is veel hoger (wel 10120 tot 10140 keer) dan de waargenomen donkere energie.

Eerste materie in het Universum:

Links:
The Big Bang and the Big Crunch

Fysische kosmologie

The Five Ages of the Universe

Logarithmic Maps of the Universe

A Logarithmic Map of the Entire Known Universe in One Image

Agenda – Cosmic Instability: How a Smooth Early Universe Grew into Everything You Know (TV YouTube)

Agenda – Fast-spinning black holes narrow the search for dark matter particles / Constraints on Ultralight Scalar Bosons within Black Hole Spin Measurements from the LIGO-Virgo GWTC-2 – publication

Planck Stars: Quantum Gravity Research Ventures Beyond the Event Horizon

Agenda – Dark Energy Survey

Deel: